Page 2
CWA Annex A Document Management

[image: image1.png]European Commites for Sandardzation
‘Comi Européen de Nomalsation
Europaisches Komitee fir Nomung

CEN/ISSS WS/BII
REPORT ON REQUIREMENTS
Document Management

Business Domain: Electronic Public Procurement
Document Id: CEN/ISSS WS/ RQAA

 Document Summary

	Document Item
	Current Value

	Document Title
	Document Management

	File name
	BII3-A-DocumentManagement_d07.doc

	Date Last Modified
	21/10/09 17:36

	Current Document Issue
	0.7

	Status
	CEN/ISSS BII/WS Normative Annex

	Document Description
(one sentence summary)
	Report on requirements and alternatives for toolbox for easy-to-use generation, validation and submission of conforming tenders, invoices and tenderer-issued documents.

Contributors

	Name
	Organization

	Oriol Bausà (OB)
	Invinet Sistemes

	WG3
	

Log of Changes

	Issue No.
	Date of Change
	Changed By
	Summary of Change

	0.1
	12 dec 2008
	OB
	Initial draft

	0.2
	27 jan 2009
	WG3
	Comments from WG3 members in Copenhagen F2F meeting

	0.3
	18 feb 2009
	OB
	Editing

	0.4
	09 jun 2009
	OB
	Formatting and editorial changes

	0.5
	17 jun 2009
	OB
	Oslo meeting comments

	0.6
	16 Sep 2009
	OB
	Public revision and WG1 alignment

	0.7
	20 Oct 2009
	OB
	Last revision

 TABLE OF CONTENTS
51. Preamble

2. Introduction
6
3. References
9
4. Objective
10
5. Scope
11
6. Requirements
12
6.1 Functional Requirements
12
6.1.1 Create conformant instances
12
6.1.2 Profile identification
13
6.1.3 Multilanguage support
13
6.1.4 Integration support
13
6.1.5 Common code list use
13
6.1.6 Validate instances
14
6.1.7 Human readability
14
6.2 Non Functional Requirements
14
6.2.1 Small and Medium-sized enterprise support
14
7. Technologies
16
7.1 eXtensible Markup Language (XML)
16
7.2 XML schema
16
7.3 Schematron
17
7.4 eXtensible Stylesheet Language Transformations (XSLT)
17
7.5 XML Path Language (XPATH)
18
7.6 XML Forms (XFORMS)
18
7.7 Genericode
19
7.8 XQuery
19
8. Specific artefacts
20
8.1 Integration
20
8.1.1 XSD Schemas
20
8.1.2 Code lists
21
8.1.3 Programming language bindings
22
8.2 Instance creation
22
8.2.1 Web Forms
22
8.2.2 Office templates
22
8.3 Instance visualization
22
9. Conclusions
24
9.1 Genericode Code lists
24
9.2 Context Value Associations
24
9.3 Sample XForms
24
9.4 Sample XSLT
24
10. Toolbox reference (Informative)
26
10.1 Disclaimer
26
10.2 Tools list
26
10.2.1 Parsers and processors
26
10.2.1.1 Apache Xalan
26
10.2.1.2 Apache Xerces Project
27
10.2.1.3 Libxml2
27
10.2.1.4 Saxon
27
10.2.1.5 SW8T.XML
27
10.2.1.6 XDOM
27
10.2.2 XML Data Binding tools
27
10.2.2.1 C++
28
10.2.2.2 Java
28
10.2.2.3 JavaScript
29
10.2.2.4 Ruby
29
10.2.2.5 C#
29
10.2.2.6 Phyton
30
10.2.3 Tools to build XForms
30
10.2.3.1 Orbeon
30
10.2.3.2 Chiba
30
10.2.3.3 XSLT Forms
30
10.2.4 XML Databases
30
10.2.4.1 Apache Xindice
31
10.2.4.2 BaseX
31
10.2.4.3 Berkeley DB XML
31
10.2.4.4 DB2 9 Express-C
31
10.2.4.5 eXist-db
31
10.2.4.6 MonetDB/XQuery
31
10.2.4.7 Sedna XML Database
31
10.2.4.8 Timber
31
Bibliography
32

1. Preamble
The purpose of the CEN/ISSS Workshop on Business Interoperability Interfaces for Public Procurement is to provide a basic framework for technical interoperability in pan-European public procurement electronic transactions, expressed as a set of technical specifications compatible with UN/CEFACT in order to ensure global interoperability, using the NES and CODICE customizations of OASIS UBL 2.0 as its starting point.
In order to help the adoption and wide use of the specifications by contracting authorities and businesses, the workshop will include in its deliverables reports on requirements for tools that ensure interoperability in electronic public procurement.

The focus of Working Group 3 will be to identify and prioritize the requirements for tools or standards for the different needs (validation, output, input, digital signature, storage and exchange of XML documents) and other aspects relating to the document content and business processes

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in IETF RFC 2119 [RFC 2119]
. These keywords are capitalized when used to unambiguously specify requirements. When these words are not capitalized, they are meant in their natural language sense.
2. Introduction
The abilities to create, parse, transform, validate, process and in general manage electronic document instances are key functionalities for these parties pretending to implement electronic procurement systems. Each party information system should be able to generate electronic document instances following these CWA restrictions and send them to the recipient party through a transport infrastructure. Similarly, a party’s information system should be able to receive, validate, process and store incoming electronic documents.

The BII Profile Architecture document defines a profile as a technical specification describing:

· Business processes, i.e. a detailed description of the way trading partners intend to play their respective roles, establish business relations and share responsibilities to interact efficiently with the support of their respective information systems,

· Business rules governing the execution of that business process,

· Possible run-time scenarios and the business commitments achieved,

· The electronic messages exchanged as part of the business process and the sequence in which these documents are exchanged,
· The information content of the electronic messages exchanged, including the constraints in the information model.

[image: image2.emf]class Metamodel Class diagr...

 Profile

 Business Process

 Business partner

 Authrized Role

 Business

Transaction

 Business

Collaboration

 Business rules

 Transaction Data

Model

 Syntax message

 Information

Element

 Process rules

 Information

constraints

 Syntax element

+Contains 0..*

+Used in

1..*

0..*

+Governs

0..*

1..*

+Governs

1..*

+Is a component of

1..*

+Defines choreography of

1..*

+carries

1..*

+Maps to

1..*

+Used in

1..*

+uses

1..*

+Carried out by

2

+Participate

in

1..*

+Is played by

1

+Acts in 1..*

+Is part of

1..*

+Contains

1..*

+Participate in

1..*

+Carried out by

1..*

+Used in

1..*

+Requires

1..*

+Governs

0..*

+Contains 1..*

+Commits to

1..*

+Commits

2

+Implemented by

1..*

+Impelements

1..*

+is constrained by 0..*

+applies to 1..*

+is part of

1

+contains

1..*

Fig 1 Profile object model (BII Profile Architecture)
So not only do the profiles determine what documents are used in a given process but they also restrict document contents in terms of the elements, their cardinality and associated constraints on the information that can be carried out in particular instances.
In order to determine these restrictions on the contents of the document instances, two different data models have been defined for most of the identified electronic documents:

· A “core” data model, where a minimum set of elements has been defined in order to fulfil legal provisions in a common European scenario

· A “full” data model that provides the maximum boundary for extensions of the previous “core” data model, to allow specific Member States or industry sector extend the core model with their own specific requirements.

The key standardization aspect of the profile description is thus in the semantics layer rather than in the syntax layer. Consequently messages within a profile could be structured in different message standards/syntaxes as long as these selected standards contain all the required information elements.
For a specific syntax to be usable in the context of CEN BII, it has to be possible at least to map all constraints in CEN BII “core” data models to the syntax.
To enable the market to start working on electronic public procurement a specific binding to UBL – a standard electronic business document syntax – has been defined. Nevertheless, the syntax-neutral definition of data models, business rules and information constraints from this CWA facilitates its future adaptation to other syntax standards when available. This means that the profiles from this CWA are not tightly coupled to a specific syntax, and they can be useful independently from the standards evolution, convergence or even the appearance of new standard data models.

Both contracting authorities and economic operators have similar requirements when facing the challenge to manage electronic documents.

Document management is a broad term that is defined in this report as the ability of a system to generate, validate, transform and view an electronic document.

Managing an electronic document has then different phases:

1. Electronic document instance generation, applications should be able to create instances that fulfil the requirements for the profile they are constrained by.

2. When receiving electronic document instances it must be possible for the application to validate if the received instance fulfils its profile requirements as defined by CEN BII and integrate its contents into the receiving system data model.

3. Some participants in the exchange should have the ability to view the electronic document instance contents in a human-readable way.

There are other phases in document management dealing with the security, storage and retrieval issues that are not being covered in this report.

CEN BII electronic documents use XML as the base meta-language or syntax. There are other syntaxes that allow for document structure definition such as EDIFACT
, JSON
 or YAML
, but XML has been chosen for the following reasons:

1. The main international standardization efforts in terms of electronic business are using XML-based vocabularies

2. There are a significant set of tools and technologies that facilitate the use of the XML syntax, aimed at:

a. Transforming documents

b. Rendering documents for presentation

c. Validation

There are many tools, both licensed and open source, which can help economic operators and contracting authorities planning to create, or improve, their own electronic systems.

To collect or create tools that may help managing data models, two different types of users have been taken into account:

· Small and medium size organizations, where the capability to integrate CEN BII Profiles into their own systems may be not relevant, but end-user tools can be provided to enable them participating in electronic procurement processes.

· Large corporations with existing electronic procurement systems, where the integration of the CEN BII Profiles is an important requirement.

3. References
Using XML as the standard way of representing electronic business documents lets us use a set of different and powerful tools and techniques to create documents and validate and process them. The most relevant standards and recommendations are:

· Extensible Markup Language (XML) 1.0 W3C Recommendation 10-February-1998
· XML Schema Part 1: Structures. W3C Recommendation 2 May 2001
· XML Schema Part 2: Datatypes. W3C Recommendation 02 May 2001

· XSL Transformations (XSLT) Version 1.0 W3C Recommendation 16-November-1999

· Extensible Stylesheet Language (XSL) Version 1.1 W3C Recommendation 05 December 2006

· XML Path Language (XPath) Version 1.0 W3C Recommendation 16 November 1999
· XForms 1.0. W3C Recommendation 29 October 2007
· ISO/IEC 19757 – DSDL Document Schema Definition Languages
· Part 2 - Regular-grammar-based validation - RELAX NG

· Part 3 - Rule-based validation – Schematron

· Part 4 - Namespace-based validation dispatching language - NVDL

Apart from those generic XML management standards, CENBII WS has focused on the following XML vocabularies to build the required electronic business documents:

· Universal Business Language (UBL) v2.0 OASIS Standard December 2006
· CODICE version 1.04 Ministerio Economía y Hacienda of Spain 2006
· eTendering UN/Cefact XML standards (BRS/RSM/XML Schemas) TBG6 2007
4. Objective

The objective of this report is to identify requirements for applications to fulfil the capability of managing documents without the need for human intervention both when sending and receiving electronic procurement information.

Samples of end-user tools and artefacts to promote the adoption of this CWA both in SME and large organizations are provided. To this end, two types of tools are presented:

1. Samples of end user tools to help SME creating and transforming document instances.

2. Samples of integration tools to include generation capabilities in the large corporation electronic procurement systems

CEN BII has decided to promote two different XML vocabularies:

· UBL for the post-awarding phase

· UN/CEFACT for the pre-awarding phase

The decision of promoting specific vocabularies has been taken to enable this CWA to produce actual sample implementation tools. Actual tools must be developed over existing standards. Providing sample tools and references can accelerate the adoption process of the CEN BII Profiles both in contracting authorities and in the private sector.

Despite of the vocabularies chosen for the post and pre awarding phases, the requirements section in this document is going to promote syntax neutrality, which means that even if a binding is provided to one of the vocabularies defined above, the requirements defined in this report can be applied to any other one.

5. Scope
Identifying the requirements for information systems that need to deal with XML document instances when generating and transforming them.

List available tools that can help contracting authorities and economic operators include the xml document management functionalities into their IT systems.

Define specific artefacts that can ease the development of document management functionality in the information systems of the participating parties, both for small and medium-sized companies and for large organizations.

Provide sample tools for document instance generation and visualization form/to back-end systems.

6. Requirements
In this section there is a list of functional and non-functional requirements for the generation and transformation of electronic document instances that should be met by participants in electronic procurement processes.

Other annexes of this part of the CWA cover requirements on security (digital signature or tender submission) and transport.

6.1 Functional Requirements

6.1.1 Create conformant instances

The generation of electronic document instances has to be fulfilled by information systems of the different parties participating in a CEN BII profile-driven document exchange.

The landscape of information systems is heterogeneous, and their capabilities have differences from one party to another one. Each party can handle their information requirements with a wide variety of solutions, amongst them:

· An out-of-the-box ERP product

· An in-house developed system

· An office system

· A web browser.

To avoid exclusion, there must be ways of creating and receiving electronic business documents from / to any of those different systems.

Despite the IT solution used, the instances created and sent from a party must follow the profile business rules and data constraints specified by the appropriate CEN BII Profile.

	BII-AR01
	Business documents MUST be created following the rules and constraints specified in CEN BII profiles

As defined in the Annex B on Conformance Testing, creating electronic document instances following strictly CEN BII Profiles results in instances strict conformant to the Profile.

An instance is strictly conformant to the profile if it carries all the “core” data and if fulfils all the expressed information constraints.

On a bilateral agreed basis, parties could:

· Extend the data set of the electronic model defining a broader set of elements (but still inside the CEN BII “full” data model)

· Further restrict the CEN BII business rules (without breaking any of the CEN BII rules).

In which case, the instances will have extended conformance.

This means that a document instance is conformant to a CEN BII Profile if:

1. The document instance carries only data defined in the “core” data model and fulfils information constraints

2. The document instance carries data defined in the “core” and additional data defined in the “full” data models and fulfils information constraints

3. The document instance carries data defined in the “core” or defined in the “full” data models and it is constrained by additional information constraints that do not break any of the CEN BII information constraints.

6.1.2 Profile identification

When creating a document instance, the sending party information system should identify the profile used in the document itself.

The receiving party will use the profile identifier to apply the proper CEN BII Profile rules in order to validate the instance and accept it in its system.

	BII-AR02
	Every business document instance MUST carry information about the CEN BII profile by which it is constrained

6.1.3 Multilanguage support

In Europe there are different languages, and electronic documents defined in the scope of the CEN BII have to be used across Europe to leverage electronic public procurement both from a national and a cross-border perspective.

These electronic documents are made of components. There are dates, numbers, codes and identifiers but also textual descriptions that need to be understood by the different parties participating in a document exchange, which is specially relevant when doing cross-border electronic procurement.

Any textual element inside an electronic document should have multilingual support, and information systems should be aware of the multilingual mechanism implemented in the textual descriptions of the document.

	BII-AR03
	Multilanguage SHOULD be supported by information systems

6.1.4 Integration support

Almost every programming language is XML-aware, and most of the current enterprise resource planning systems in the market are able to deal with XML documents.

Information systems must be able to generate and process generic XML documents and specially those following business rules and information constraints as defined by the CEN BII profiles.

	BII-AR04
	It MUST be possible to integrate a CEN BII conformant electronic business document instance in the receiving party information system.

6.1.5 Common code list use

CEN BII provides a set of agreed and localized code lists in order to enhance semantic interoperability across Europe.

Cross border code lists have to be defined and maintained globally, and information systems must use these agreed code lists when creating new instances or validating received documents.

	BII-AR05
	Agreed and wide-European code lists MUST be used when dealing with electronic document instances.

6.1.6 Validate instances
Validation is the process of checking if an electronic document instance satisfies the business rules and information constraints defined in the profile it declares to be constrained by.

For electronic XML documents, there are different levels of validity:

· Well-formed

· Syntax valid

· CEN BII valid

From the point of view of CEN BII, a document instance will be valid if it is well-formed, schema valid and fulfils the profile “core” data model and information constraints business rules.

	BII-AR06
	It MUST be possible to validate an electronic document instance to decide whether it is conformant to a given CEN BII Profile.

6.1.7 Human readability

Although the main flow of electronic document instances is intended to be from one application to another application, information systems should be able to show electronic document information in a human readable way for user inspection.

Some documents require user inspection, agreement, or validation when they enter, for instance, a workflow for approval. Therefore, it has to be possible to present the received electronic information in a human readable way.

	BII-AR07
	It MUST be possible to view the electronic document contents in a human readable way during the full period of document exchange and storage.

6.2 Non Functional Requirements

6.2.1 Small and Medium-sized enterprise support
SME should not be banned from the electronic procurement circuit, so efforts should be made to avoid the digital divide, providing ways for SME to generate and validate electronic document instances from web-based applications or from standard office suites.

	BII-AR08
	Generation and validation of document instances SHOULD be possible for small and medium-sized enterprises with little or no existing IT support, to enable them to access electronic public procurement in Europe, thus avoiding the digital divide.

7. Technologies

To cover the list of requirements above, there is a set of XML technologies that can help parties adding electronic document management functionality into their information systems.

Those technologies are supported by W3C and ISO standards and are mature enough to be deployed in IT systems.

Below, there is a list of these XML technologies and references to the standards that define them..
7.1 eXtensible Markup Language (XML)

[XML] is a simple and flexible text format derived from SGML [ISO 8879] that describes data objects. Those data objects are called XML documents and consist of a set of entities that contain data.

When defining XML documents, it is possible to create new markup entities to extend the structure of the data objects. XML imposes restrictions on the structure and layout of the XML documents.

An XML document is well formed if it follows XML constraints. Those XML restrictions can be summarized as:

· Entities should be opened and closed through markup tags

· Entities should be properly nested

· Markup names are case sensitive

· Entities can carry attributes that should be enclosed in quotation marks

Currently there are two versions of XML:

· XML 1.0 defined in 1998 and with five revisions since then with a final publication on November 26, 2008. It is widely used and implemented.

· XML 1.1 published on February 4, 2004, the same day as XML 1.0 Third Edition, and is currently in its second edition published on August 16, 2006. It contains specific features but it is not very widely adopted.

7.2 XML schema

It is possible to describe types of XML documents using XML schemas. XML schemas describe XML documents in terms of document structure and data restrictions. When using a XML schema, you end up with a restricted set of possible XML documents that conform to a XML vocabulary.

There are different ways of defining a XML schema:

· [DTD] Document Type Definition

· [XSD] XML Schema Definition Language

· [RelaxNG] REgular LAnguage for XML Next Generation
An XML document is considered valid if it does not break the restrictions of an XML schema.

The most widely used XML schema is XML Schema Definition Language. The current version of XSD is:

· XML Schema 1.0 that was published back in October 2004 and has two main parts, the Part 1 for Structures and the Part 2 for Datatypes.

· The XML Schema WG is working towards the completion of XML Schema 1.1, which is intended to be mostly compatible with XML Schema 1.0 and to have approximately the same scope, but also to fix bugs and make consistent improvements.

Standardization bodies create XML schemas to produce vocabularies. For electronic business there are different relevant initiatives. In the scope of electronic public procurement, CEN BII has based its deliverables on the following XML vocabularies:

· [UBL 2.0] Universal Business Language, a vocabulary defined in the UBL Technical Committee of OASIS.

· [TBG6] UN/CEFACT Trade and Business Group that has produced a set of electronic Tendering schemes.

Both vocabularies provide XSD schemas for document definition.

UBL versions are:

· [UBL 1.0] published by OASIS UBL TC in November 2004. It was published jointly with the UBL Naming and Design Rules, the main rules to build UBL document types.

· [UBL 2.0] published in December 2006, by the UBL TC. This version corrected some of the UBL 1.0 document types to fulfil specific requirements based on legislation and enlarged the number of document types to cover a broad electronic procurement and transportation set of business processes.

At the moment of the publication of this CWA the only stable vocabulary available is UBL 2.0 hence CEN BII has only bound the post-awarding data models to this vocabulary.

7.3 Schematron

[Schematron] is a validation language based on finding patterns inside an XML document instance. It uses XPath and a set of entities to define constraints for a XML document and is processed using XSLT engines.

It represents a good complement to grammar-based schema languages because it permits testing for co-occurrence constraints, non-regular constraints, and inter-document constraints, which are not supported by grammar-based schema languages.

Schematron 1.n was the original pre-standard version of Schematron from Academia Sinica, Taiwan. Schematron 1.6 was the last version of that line, and the ISO Schematron implementation has taken over. Schematron 1.n and ISO Schematron use different namespaces, but a Schematron 1.n schema can be converted into an ISO Schematron schema with minimal changes. Schematron 1.n is now obsolete and the Schematron 1.n skeleton is no longer maintained; ISO Schematron is the appropriate choice for new projects. Schematron was adopted as an ISO standard in 2006 in Part 3 of ISO/IEC 19757.

The information constraints in CEN BII Profiles are to be expressed with abstract Schematron artefacts that can be bound to different syntaxes using the abstract and binding features of Schematron. The validation architecture used by CEN BII is explained in Annex B Conformance Testing.
7.4 eXtensible Stylesheet Language Transformations (XSLT)

[XSLT] is a language for transforming XML document instancess into other XML documents instances. It is part of the [XSL] recommendation. It is a stylesheet language for XML. In addition to XSLT, XSL includes an XML vocabulary for specifying formatting called XSL-FO. XSL specifies the styling of an XML document by using XSLT to describe how the document is transformed into another XML document that uses the formatting vocabulary.

Versions for XSLT are:

· [XSLT] 1.0 was published as a W3C Recommendation on November 1999. It uses XPATH 1.0.

· [XSLT 2.0] is a revised version of the XSLT 1.0 Recommendation and was published on January 2007. It has been designed to be used in conjunction with XPath 2.0.

XSLT transformations can be used to render XML document instances into XHTML or PDF such as the samples provided with this annex, or to build validation artefacts from the Schematron rules. In the Annex 2 on Conformance Testing, there are samples for producing XSLT tools that can let users validate the Schematron business rules defined in the different CEN BII Profiles.

7.5 XML Path Language (XPATH)

[XPATH] is a language for addressing parts of an XML document instance. It also provides basic facilities for manipulation of strings, numbers and booleans. It is based on a tree representation of an XML document and provides the way to navigate it, selecting nodes by different criteria.

XPath is used by different XML standards such as XSLT, XML Schema or XForms.

There are currently two versions in use.

· XPath 1.0 became a Recommendation on 16 November 1999 and is widely implemented and used, either on its own (called via an API from languages such as Java, C# or JavaScript), or embedded in languages such as XSLT or XForms.

· The current version of the language is [XPATH 2.0] , which became a Recommendation on 23 January 2007. A number of implementations exist but are not as widely used as XPath 1.0. The XPath 2.0 language specification is much larger than XPath 1.0 and changes some of the fundamental concepts of the language.

XPath is the main syntax binding mechanism used in the validation artefacts. It is also required to build the XForms and XSLT to visualize XML document instances.

To create a syntax binding to any particular syntax, a technical expert should express the abstract business rules and information constraints provided in the abstract layer into XPath expressions that fit into the syntax-specific data model.

7.6 XML Forms (XFORMS)

XForms is an XML format to define user interfaces for XML electronic documents. It was designed as a next generation of HTML forms and it allows describing user interfaces and data manipulation.

XForms follows a Model-View-Controller approach where you can define the data model and its constraints through instances and XSD schemes, the view or layout of the HTML page to be displayed and the binding between the layout and the model.

There are two major versions of XForms:

· [XFORMS 1.0] (Third Edition) published on 29 October 2007. The original XForms specification was made an official W3C Recommendation on 14 October 2003.

· [XFORMS 1.1] introduces a number of improvements and reached the status of W3C Candidate Recommendation on 29 November 2007.

Although XForms is not currently supported widely in web browsers, there are different plug-ins, tools and extensions that can be used to support it. References to these tools can be found in the chapter 10. Toolbox reference (Informative).

7.7 Genericode

[Genericode] is an OASIS standard intended for defining code lists. Code lists or enumerations are an important aspect to provide semantic meaning to data elements. Code lists use to be handled through enumerations in XSD Schemas, but this is not flexible because a change in a code list value enforced a change in the XSD Schema version. Code lists tend to change more often than data structures, so it seems better to keep them separated.

Genericode is the first initiative to define a standard model to represent code lists as XML instances, thus avoiding the need to define them tightly coupled with the xml data structure. Genericode provides:

· A standard model and XML representation for the contents of a code list

· A standard model and XML representation for data associated with items in a code list

· A standard model and XML representation for how new code lists are derived from existing code lists

Genericode has been adopted by different XML vocabularies such as UBL or FpML, and as a unique solution to manage code lists that is gaining interest in other different standardization bodies such as UN/CEFACT.

CEN BII has defined a set of code lists using tables that are mapped to Genericode files.

7.8 XQuery
[XQUERY 1.0] is a query language designed to query collections of data in XML document instances. It is semantically similar to SQL and possesses some language programming capabilities. It was developed as a W3C Recommendation.

Work developed by the XML Query group has been coordinated with the development of XSLT because both groups used XPath, which is a subset of XQuery.

8. Specific artefacts

In this section there is a reference to specific artefacts that can be built to facilitate the deployment of document management capabilities among the community of economic operators and public authorities to fulfil requirements and constraints identified in the electronic documents exchanged in the CEN BII Profiles.

Emphasis is done on artefacts that can facilitate the generation of conformant CEN BII documents and the visualization of exchanged instances. Validation of conformance for IT systems and document instances is covered deeply in Annex B Conformance Testing.

This chapter is divided into the following sections:

· Artefacts to facilitate integration with IT systems

· Artefacts to facilitate electronic business document creation

· Artefacts to facilitate electronic business document visualization

Next sections explain different artefacts and why are they intended for, and the list of tools that could be created to ease CEN BII adoption.

8.1 Integration

Programmers could use different artefacts to integrate CEN BII compliant electronic document instances into their IT systems. This section provides a list of proper tools and utilities that will help implementers in the integration effort.

8.1.1 XSD Schemas

As there are tools for most of the programming languages that enable programmers to create an XML Data Binding directly from an XSD Schema, it would be useful for them to get the restricted XSD Schemas for the different documents defined in each CEN BII Profile.

CEN BII defines a “core” data model for the different transactions, so the implementers could use restricted XSD Schemas instead of the full standards XSD Schemas to create XML Data Bindings, nevertheless, CEN BII is not going to produce restricted XSD Schemas for the transactions defined in the different profiles. The main reason for not providing such artefacts is that doing so could prevent users and applications being able to understand extended document instances. There is also a consideration for Governance. As long as there is no Governance mechanism, it is not possible to assure the maintenance of this kind of artifacts.

A restricted XSD Schema is a new schema defining a subset for the standard XSD Schema. This approach was used when defining NES profiles. The main points when defining restricted XSD Schemas are that an XML instance valid for a restricted XSD Schema must be valid for the standard XSD Schema. This means that:

· Restricted XSD Schemas do not define new namespaces, but rather they use the same namespaces used in the standard XSD Schemas.

· Only optional elements can be removed when defining a restricted XSD Schema

· Mandatory elements must be preserved

· Optional elements can be defined as mandatory

· Maximum cardinalities can be restricted

Building restricted XSD Schemas does not mean creating a new standard but rather a particular way of using an already existing standard; nevertheless, as stated above, no restricted schemas will be delivered with this CWA.

The alternative for implementers is using the XSD Schemes as provided by the standard organizations (UBL in post-awarding and UN/CEFACT in pre-awarding) to create XML Data Binding tools or validation services. Nevertheless, using standard data models is not enough, on top of them programmers should implement the actual constraints identified in CEN BII Profiles.

8.1.2 Code lists

Aligning code lists across Europe is another key issue when facing interoperability and generation of electronic documents. CEN BII has defined code lists to achieve a common understanding of codes and its semantics.

There are two major options to define enumerations in an XML document.

1. Creating XSD enumerations

2. Creating Genericode instances and context value associations
As CEN BII is not producing new schemas, the first option is not available; moreover, constraints for versioning when using XSD enumeration technology have been already identified.

This leads to the second option, creating Genericode files for every identified code list required in the electronic documents.

Genericode has two main types of deliverables:

· Genericode files, that handle code list information such as identifiers, version and agency, and rows with codes and semantic meaning. Genericode files are generic or abstract, so they are not bound to any particular syntax. As explained with more detail in Annex B on Conformance Testing report, Genericode files are part of the syntax neutral set of artefacts delivered by this CWA.

· Context Value Association files, that bind the Genericode files to actual elements in particular electronic business document syntax.

Genericode is not a wide adopted technology yet, but it is the main option when trying to represent code lists in XML. The main issues related to the use of Genericode by the implementers are:

· Requirement to write applications that can understand and process Genericode files

· Requirement to map generic codes and values from Genericode to internal systems code list representations and databases

· Requirement to implement mechanisms for versioning awareness

· Requirement for extension guidelines when customization is allowed

Despite the fact that some development will be needed when integrating Genericode code lists in actual IT systems due to the requirements listed above, sharing a common set of code values for the different coded values in electronic business documents is a major benefit.

A set of Genericode files will be provided for the syntax neutral layer. There will be a Genericode per each single element requiring a code in the data models. A sample Context Value Association file will also be provided for ready-to-use straight implementation with the vocabulary selected by this CWA.

8.1.3 Programming language bindings

A further step consists on providing actual XML data binding source code to the most popular programming languages such as Java or .NET using some of the tools described in 10. Toolbox reference (Informative).
The major benefit is that programmers could then start working from the data model with their native programming language instead of starting with the standard XSD Schemas.

Even if this could ease the work for implementers, as they will not be required to have deep knowledge on XML technologies, it represents a large new set of artefacts to be maintained by the governance model that could increase the administrative burden for the governance system.

Because of the cost of maintenance for CEN BII to deliver a set of different language data bindings for the different restricted XSD Schemas, no artefacts of this kind will be provided in this CWA.

8.2 Instance creation

This section covers the tools and artefacts required to create XML document instances without IT systems integration. Providing tools that can be used from a web site or from a desktop office application could ease the adoption for small and medium size enterprises that will not have the requirement of buying and deploying any IT system to manage their business processes.

Web forms could also be used by service providers to create services intended for small and medium enterprises to integrate them into the electronic public procurement processes narrowing digital divide in Europe.

8.2.1 Web Forms

As the electronic business documents defined in CEN BII have different requirements and constraints depending on the context or profile where they are used, different XForms should be developed for creating those different XML document instances. This means that the number of XForms should be larger than the number of document types defined.

Genericode files provided by CEN BII are used as secondary data models to populate drop-down lists in the XForms.

As in the case of XML data binding, a sample XForms is going to be provided as a reference.

8.2.2 Office templates

Another way of creating XML instances for small and medium size enterprises is using popular office applications. With the current features of the most commonly used office application suites it is possible to create XML instances following an external schema.

In this case, using restricted XSD Schemes, it is possible to create templates for the different office packages. No samples for offices templates will be provided attached to this CWA.

8.3 Instance visualization

IT systems can manage XML instances quite easily; nevertheless when an electronic XML document crosses the enterprise’s boundary, some specific management requirements for workflow control can be settled by companies, requiring human intervention. And even if a human being could read an XML document, it is not easy to understand its meaning reading across the tag soup.

XSL transformations are used to provide good human interfaces so as to enable people to understand the meaning of the XML document instances. However, due to XSLT features and capabilities, when applying a transformation, it is possible to get a wrong view of the data contained in the XML document instance. You can get a view that:

· Hides important information from the actual XML document

· Makes calculations modifying amounts or dates

· Incorrectly translates codes

· Incorrectly binds data to labels

Correct human representation of XML document data is a key issue to address some of the processes that will require human intervention in a paperless business process.

Providing a set of CEN BII official XSL transformation stylesheets has the main benefit of :

· Everybody has a standard artefact to view XML document instances in a common way; despite the fact that they can make use of other transformation artefacts to apply particular layouts and formats.

· Implementers will have guidance on how to build visualization artefacts.

There are no automatic tools capable of creating XSL transformations from XSD Schemas so the work in providing those artefacts should be done manually, following standard layouts such as UNCEFACT Recommendation
 no 1 called UN Layout Key for Trade Documents.

There will be no XSLT transformations provided with this CWA as the creation of such artefacts requires maintenance, so it will be necessary to create a governance model (see Annex D on Governance) to create and maintain them.

9. Conclusions

Making IT systems capable of managing CEN BII document specifications in a common way across Europe requires the production of specific artefacts to facilitate and drive the work developed by a lot of different implementers.

Functional requirements define the specific rules for document handling in IT systems. A set of technologies has been identified and briefly explained in order to provide options for the treatment of electronic business documents with open and accessible technologies. This does not mean that the use of the recommended technologies is mandatory for the different parties involved in the development of electronic public procurement systems, the aim is simply to make everybody aware of the possibilities of handling such electronic documents.

Based on those technologies, a set of specific artefacts for the CEN BII has been identified. Artefacts for document validation will be defined with more detail in the CWA Annex B on Conformance Testing.

9.1 Genericode Code lists

Lists of codes defined in CEN BII in Genericode format.
· AccountTypeCode

· AddressFormatCode

· AllowanceChargeReasonCode

· BinaryObjectMimeCode

· ChannelCode

· CountryIdentificationCode

· CurrencyCode

· DeliveryTerms/ID

· Discrepancy/Response Code

· DocumentTypeCode

· InvoiceTypeCode

· ParentDocumentTypeCode

· PaymentChannelCode

· PaymentMeansCode

· ResponseCode

· StatusCode

· TaxCategory/ID

· TaxExemptionReasonCode

· TaxScheme/ID

· TaxTypeCode

· UnitOfMeasureCode
9.2 Context Value Associations

Context Value Associations for the following transactions.

· SubmitInvoice
9.3 Sample XForms

A sample Xform is provided for the SubmitInvoice transaction

· SubmitInvoice

9.4 Sample XSLT

A sample XSLT is provided for the SubmitInvoice transaction

· SubmitInvoice

10. Toolbox reference (Informative)

The intended readers of this section are technical people, decision makers and IT managers that can use it as a guidance to discover several open source alternatives currently available to address different issues when implementing electronic business capabilities into their systems.

It is not the purpose of this document to provide a complete list of all available tools that could cover the document handling capability but to give some advise on the alternatives that could be taken into account when adding this capability into IT systems. This section only refers to open source tools, other commercial tools covering the same functionalities can be found.
10.1 Disclaimer

Not all listed tools enclosed in this report have been fully tested by CEN BII members but they are listed as a reference and to give a vision of the state-of-the-art in terms of open source tools for managing XML electronic documents. Other commercial tools can be found in the market to cover the listed functionalities and providing professional support.

It is not the aim of this report to cover every different tool available for managing documents. The lists just cover open source products or initiatives and they are not exhaustive.

CEN BII does not provide any support, evolution nor maintenance service on any of the tools referred in this section. To get support services or check for evolution or maintenance programs, please visit to the tool website on the Internet.

10.2 Tools list

The list of tools covered in this section has been classified as follows:

· Parsers and engines – Components that can be embedded in programs to help parsing documents, validating or transforming instances.

· XML Data Binding – Tools that let programmers represent XML documents as objects in memory in a particular programming language.

· Tools to build XForms – Tools specialized in the generation of XML forms.

· XML Data storage– Tools to store XML document instances

For every listed tool a summary abstract from the tool’s provider published material is provided. The URL address for the tools is not provided as they are subject to change.

10.2.1 Parsers and processors

List of tools that can be embedded in programs to help parsing, validating or transforming XML instances.
10.2.1.1 Apache Xalan

Xalan-Java is an XSLT processor for transforming XML documents into HTML, text, or other XML document types. It implements XSL Transformations (XSLT) and XML Path Language (XPath) and can be used from the command line, in an applet or a servlet, or as a module in other program.

10.2.1.2 Apache Xerces Project

The Apache Xerces Project currently consists of the following sub-projects, each focused on the development of XML parsers and related components in various languages:

· Apache Xerces C++ - A processor for parsing, validating, serializing and manipulating XML, written in C++

· Apache Xerces2 Java - A processor for parsing, validating, serializing and manipulating XML, written in Java

· Apache Xerces Perl - A processor for parsing, validating, serializing and manipulating XML, written in Perl

· Apache XML Commons - A collection of XML components and utilities, including a catalog resolver and various XML APIs

10.2.1.3 Libxml2

Libxml2 is the XML C parser and toolkit developed for the Gnome project (but usable outside of the Gnome platform). Though the library is written in C a variety of language bindings make it available in other environments.

Libxml2 is portable, the library should build and work without serious troubles on a variety of systems (Linux, Unix, Windows, CygWin, MacOS, MacOS X, RISC Os, OS/2, VMS, QNX, MVS, ...)

10.2.1.4 Saxon

Saxon provides an open-source implementation of XSLT 2.0, XPath 2.0 and XQuery 1.0. This provides the "basic" conformance level of these languages: in effect, this provides all the features of the languages except schema-aware processing. This version reflects the syntax of the final XSLT 2.0, XQuery 1.0, and XPath 2.0 Recommendations of 23 January 2007
10.2.1.5 SW8T.XML

sw8t.xml is JavaScript API for creating, parsing, maintaining, and generating XML documents and XML output.

sw8t.xml provides an organized and documented API specification, for XML management. It is 100% browser independent and runs in all modern browsers the same way.

10.2.1.6 XDOM

Open XML is a collection of XML and Unicode tools and components for the Delphi/Kylix™ programming language. All packages are freely available including source code.
10.2.2 XML Data Binding tools
XML data binding is the process of representing XML document information as an object in computer memory. Instead of using DOM to retrieve data directly from the XML document, applications can access the data from computer memory through that object.

Converting an XML document to a memory object is called unmarshalling, and serializing an object as an XML document is called marshalling.

There are XML data binding tools for different programming languages. When choosing an XML data binding products the reader should look for its limitations in terms of round trip.

Round-trip limitations arise when converting from XML to memory and back to XML and some entities in the original XML are lost or the document layout suffers a restructuration. The type of entities that can be lost during this round-trip conversion can be comments or entity references; hence it should not be a big issue in terms of data contents. Nevertheless, if digital signatures are applied in the document instance, these limitations in the XML Data Binding tool have to be taken into account.

Below there is a list of some XML data binding tools classified by programming language.

10.2.2.1 C++

10.2.2.1.1 C++ XML Objects

C++ XML Objects is a framework for persisting hierarchies of C++ objects to and from XML. This project allows your classes to derive from a single object (called "xmlobj"), provide a few extra methods which allow the visitor pattern to work on them and register them so that they can be read or written to an XML stream.
10.2.2.1.2 Code Synthesis XSD

XML Data Binding compiler for C++ developed by Code Synthesis and dual-licensed under the GNU GPL and a proprietary license. Given an XML instance specification (XML Schema), it generates C++ classes that represent the given vocabulary as well as parsing and serialization code. It is supported on a large number of platforms, including AIX, GNU/Linux, HP-UX, Mac OS X, Solaris, and Windows. Supported C++ compilers include GNU G++, Intel C++, HP aCC, Sun C++, IBM XL C++, and Microsoft Visual C++.
10.2.2.1.3 gSOAP

gSOAP is a cross-platform open source C and C++ software development toolkit. Generates C/C++ RPC code, XML data bindings, and efficient schema-specific parsers for SOAP Web services and other applications that benefit from an XML interface.

10.2.2.1.4 XML Beansxx

XML Beansxx is a tool that allows access to XML in a C++. It is similar and in fact inspired by Apache XMLBeans project. Similarly to XMLBeans, xmlbeansxx provide an XML Schema instance to C++ code generator. The generated code can be later invoked to access XML instance document data.
10.2.2.2 Java

10.2.2.2.1 Castor

Castor is an Open Source data-binding framework for Java[tm]. Castor provides Java-to-XML binding, Java-to-SQL persistence, and more.
10.2.2.2.2 Eclipse Modelling Framework (EMF)

Eclipse is a multi-language software development platform written primarily in Java comprising an IDE and a plug-in system to extend it. It is used to develop applications in Java and, by means of the various plug-ins, in other languages as well - C/C++, Cobol, Python, Perl, PHP and more.

10.2.2.2.3 Hibernate

Hibernate is an object/relational persistence and query service. Hibernate lets developing persistent classes following object-oriented idiom - including association, inheritance, polymorphism, composition, and collections. Hibernate allows expressing queries in its own portable SQL extension (HQL), as well as in native SQL, or with an object-oriented Criteria and Example API.
10.2.2.2.4 Java Architecture for XML Binding (JAXB)

Provides a runtime-binding framework for client applications including unmarshalling, marshalling, and validation capabilities.
10.2.2.2.5 JiBX

JiBX is a framework for binding XML data to Java objects. It lets you work with data from XML documents using your own class structures. The JiBX framework handles all the details of converting your data to and from XML based on your instructions. JiBX is designed to perform the translation between internal data structures and XML, but still allows you a high degree of control over the translation process.
10.2.2.2.6 XMLBeans

XMLBeans is a technology for accessing XML by binding it to Java types. XMLBeans provides several ways to get at the XML, including:

· Through XML schema that has been compiled to generate Java types that represent schema types.

· The XMLBeans API also allows you to reflect into the XML schema itself through an XML Schema Object model.

· A cursor model through which you can traverse the full XML infoset.

· Support for XML DOM.

10.2.2.2.7 XStream

XStream is a simple library to serialize objects to XML and back again.
10.2.2.3 JavaScript

10.2.2.3.1 OpenLaszlo

OpenLaszlo is an open source platform for the development and delivery of Internet applications.

10.2.2.4 Ruby

10.2.2.3.1 REXML

REXML is a conformant XML processor for the Ruby programming language. REXML passes 100% of the Oasis non-validating tests and includes full XPath support. It is implemented in pure Ruby and it has a clean, intuitive API. REXML is included in the standard library of Ruby
10.2.2.3.2 Ruby Objects to XML Mapping Library (ROXML)

ROXML is a module for binding Ruby classes to XML. It supports custom mapping and bidirectional marshalling between Ruby and XML using annotation-style class methods. ROXML supports the LibXML and REXML XML processors.
10.2.2.5 C#

10.2.2.5.1 Dingo

Dingo is an XML data binding utility that generates C# code from XML Schemas.

10.2.2.5.2 XmlObjects

XmlObjects is a lightweight library to map Xml documents to C# classes, whose main purpose is to simplify the handling of simple Xml files; its objective is not the serialization of objects in Xml (this functionality is built in .Net).

10.2.2.6 Phyton

10.2.2.6.1 generateDS.py
Generates Python data structures (for example, class definitions) from an XML Schema document. These data structures represent the elements in an XML document described by the XML Schema. It also generates parsers that load an XML document into those data structures. In addition, a separate file containing subclasses (stubs) is optionally generated. The user can add methods to the subclasses in order to process the contents of an XML document.
10.2.3 Tools to build XForms

One of the most important issues when building XForms to create forms for electronic documents is the lack of native support of this W3C Recommendation in the most popular web browsers.

Even between the browsers with plugins there are differences that make the same XForm not fully compatible in all the different browsers.
In this section there is a list of tools that can help when building forms for XML documents and deploying them independently from the client browser.

10.2.3.1 Orbeon
Orbeon Forms (formerly Orbeon PresentationServer (OPS)) is an open source forms solution that handles the complexity of forms typical of the enterprise or government. It is delivered to standard web browsers (including Internet Explorer, Firefox, Safari and Opera) thanks to XForms and Ajax technology, with no need for client-side software or plugins. Orbeon Forms allows you to build fully interactive forms with features that include as-you-type validation, optional and repeated sections, always up-to-date error summaries, PDF output, full internationalization, and controls like auto-completion, tabs, dialogs, trees and menus. Orbeon Forms already supports parts of the XForms 1.1 specification.

10.2.3.2 Chiba

Chiba Web 3 is a new major release of the Chiba server-side XForms implementation, coming with a brand new JavaScript layer, XForms 1.1 support, localisation and XPath 2.0.

10.2.3.3 XSLT Forms

An XSL Transformation that converts XForms to XHTML+Javascript (AJAX). Suitable server-side (PHP) or client-side (Internet Explorer, Mozilla FireFox, Opera, Safari) browser treatment where an XSLT 1.0 engine is available
10.2.3.4 Ubiquity

The Ubiquity XForms processor allows developers to use XForms markup to create interactive web applications. Ubiquity XForms adds new APIs to a number of popular Ajax libraries, making XForms processing available in standard browsers, without the need for a download.
10.2.4 XML Databases

Storing XML document instances natively is a key feature when using electronic documents. Persistence of electronic documents should be preserved, mainly on those documents digitally signed.
10.2.4.1 Apache Xindice
Apache Xindice is a database designed from the ground up to store XML data or what is more commonly referred to as a native XML database.
10.2.4.2 BaseX
BaseX is a native, open-source XML database and efficient XQuery/XQuery Full-Text processor. It features compact storage structures and a visual frontend, facilitating interactive access to the data.
10.2.4.3 Berkeley DB XML

Oracle Berkeley DB XML is an open source, embeddable XML database with XQuery-based access to documents stored in containers and indexed based on their content. Oracle Berkeley DB XML is built on top of Oracle Berkeley DB and inherits its features and attributes. Like Oracle Berkeley DB, it runs in process with the application with no need for human administration. Oracle Berkeley DB XML adds a document parser, XML indexer and XQuery engine on top of Oracle Berkeley DB to enable retrieval of data.
10.2.4.4 DB2 9 Express-C

IBM DB2 Express-C is a no-charge community edition of the DB2 data server. It embodies all of the core features of the more scalable DB2 editions, including the pureXML technology.
10.2.4.5 eXist-db

eXist-db is an open source database management system entirely built on XML technology. It stores XML data according to the XML data model and features index-based XQuery processing.

eXist-db is compliant with the XQuery standard. eXist-db provides an environment for the development of web applications based on XQuery and related standards. Entire web applications can be written in XQuery, using XSLT, XHTML, CSS and Javascript (for AJAX functionality). XQuery server pages can be executed from the file system or stored in the database.

10.2.4.6 MonetDB/XQuery

MonetDB is an open-source database system for high-performance applications in data mining, OLAP, GIS, XML Query, text and multimedia retrieval.
10.2.4.7 Sedna XML Database

Sedna is a free native XML database that provides a full range of core database services - persistent storage, ACID transactions, security, indices, hot backup. Flexible XML processing facilities include W3C XQuery implementation, tight integration of XQuery with full-text search facilities and a node-level update language.
10.2.4.8 Timber
Timber is a native XML database developed by the Database Group in the Department of Electrical Engineering and Computer Science, at the University of Michigan.
Bibliography

[ISO 8879] Standard Generalized Markup Language (SGML)

ISO Standard 1986

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=16387
[XML] Extensible Markup Language (XML) 1.1 (Second Edition)

W3C Recommendation 16 August 2006, edited in place 29 September 2006

http://www.w3.org/TR/2006/REC-xml11-20060816
[XSD] XML Schema Definition Language

W3C Recommendation 28 October 2004
XML Schema Part 0: Primer

XML Schema Part 1: Structures

XML Schema Part 2: Datatypes

http://www.w3.org/XML/Schema
[DTD] XML Specification DTD
W3C XML Specification DTD Revision 1.2
10 September 1998
http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm
[RelaxNG] RELAX NG Specification

OASIS Committee Specification 3 December 2001
ISO/IEC 19757-2 Document Schema Definition Language (DSDL) -- Part 2: Regular-grammar-based validation -- RELAX NG
http://relaxng.org/spec-20011203.html
[UBL 1.0] Universal Business Language v1.0

OASIS Standard, 15 September 2004

http://docs.oasis-open.org/ubl/cd-UBL-1.0/
[UBL 2.0] Universal Business Language v2.0

OASIS Standard, 12 December 2006

http://docs.oasis-open.org/ubl/os-UBL-2.0/UBL-2.0.html
[TBG6] eTendering (BRS/RSM/XML Schemas)
UN/Cefact XML standards
http://www.uncefactforum.org/TBG/TBG6/tbg6.htm
[Schematron] Document Schema Definition Language (DSDL) Part 3: Rule-based validation
ISO/IEC 19757-3:2006

http://www.schematron.com/iso/P8.html#T34
[XSL] Extensible Stylesheet Language (XSL) Version 1.1

W3C Recommendation 05 December 2006

http://www.w3.org/TR/xsl/
[XSLT] XSL Transformations (XSLT) Version 1.0

W3C Recommendation 16 November 1999

http://www.w3.org/TR/xslt
[XSLT 2.0] XSL Transformations (XSLT) Version 2.0

W3C Recommendation 23 January 2007

http://www.w3.org/TR/xslt20/
[XPATH] XML Path Language (XPath) Version 1.0

W3C Recommendation 16 November 1999

http://www.w3.org/TR/xpath
[XPATH 2.0] XML Path Language (XPath) Version 2.0

W3C Recommendation 23 January 2007

http://www.w3.org/TR/xpath20/
[XFORMS 1.0] XForms 1.0 (Third Edition)

W3C Recommendation 29 October 2007

http://www.w3.org/TR/xforms/
[XFORMS 1.1] XForms 1.1

W3C Candidate Recommendation 29 November 2007

http://www.w3.org/TR/xforms11/
[Genericode] Genericode 1.0

Committee Specification 28 December 2007
http://docs.oasis-open.org/codelist/cs-genericode-1.0/

[XQUERY 1.0] XQuery 1.0: An XML Query Language

W3C Recommendation 23 January 2007

http://www.w3.org/TR/xquery/
� http://www.ietf.org/rfc/rfc2119.txt

� http://en.wikipedia.org/wiki/EDIFACT

� http://en.wikipedia.org/wiki/JSON

� http://en.wikipedia.org/wiki/YAML

� UN/ECE recommendations are found on �HYPERLINK "http://www.unece.org/cefact/recommendations/rec_index.htm"��http://www.unece.org/cefact/recommendations/rec_index.htm�

